Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells.
نویسندگان
چکیده
OBJECTIVE Spinal cord injury results in loss of neurons, degeneration of axons, formation of glial scar, and severe functional impairment. Human umbilical cord mesenchymal stem cells can be induced to form neural cells in vitro. Thus, these cells have a potential therapeutic role for treating spinal cord injury. DESIGN AND SETTING Rats were randomly divided into three groups: sham operation group, control group, and human umbilical cord mesenchymal stem cell group. All groups were subjected to spinal cord injury by weight drop device except for sham group. SUBJECTS Thirty-six female Sprague-Dawley rats. INTERVENTIONS The control group received Dulbecco's modified essential media/nutrient mixture F-12 injections, whereas the human umbilical cord mesenchymal stem cell group undertook cells transplantation at the dorsal spinal cord 2 mm rostrally and 2 mm caudally to the injury site at 24 hrs after spinal cord injury. MEASUREMENTS Rats from each group were examined for neurologic function and contents of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, and neurotrophin-3. Survival, migration, and differentiation of human umbilical cord mesenchymal stem cells, regeneration of axons, and formation of glial scar were also explored by using immunohistochemistry and immunofluorescence. MAIN RESULTS Recovery of hindlimb locomotor function was significantly enhanced in the human umbilical cord mesenchymal stem cells grafted animals at 5 wks after transplantation. This recovery was accompanied by increased length of neurofilament-positive fibers and increased numbers of growth cone-like structures around the lesion site. Transplanted human umbilical cord-mesenchymal stem cells survived, migrated over short distances, and produced large amounts of glial cell line-derived neurotrophic factor and neurotrophin-3 in the host spinal cord. There were fewer reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the human umbilical cord-mesenchymal stem cell group than in the control group. CONCLUSIONS Treatment with human umbilical cord mesenchymal stem cells can facilitate functional recovery after traumatic spinal cord injury and may prove to be a useful therapeutic strategy to repair the injured spinal cord.
منابع مشابه
Effects of Local Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells in Combination with Low Level Laser Therapy in Repair of Experimental Acute Spinal Cord Injury in Rats
Objective- The aim of this study was to demonstrate the efficacy MSCs transplantation in combination with low level laser irradiation (low level laser irradiation) in repair of experimental acute spinal cord injury. Design- Experimental study. Animals- 28 adult male Wistar Rats. Procedures- A ballon- compression technique was used to produce an injury at the T8-T9 level of spi...
متن کاملP144: Therapeutic Application of Mesenchymal Stem Cells in Spinal Cord Injury Treatment
Spinal cord injury (SCI) is a neurologic disorder that have a significant impact on quality of life, life expectancy, and economic burden. SCI leads to irreversible neuronal loss and ultimately leads to paralysis. Mesenchymal stem cells (MSCs) are a promising source for cellular therapy because they have possessed the capacity of self-renewal and differentiation to several distinct mesenchymal ...
متن کاملMesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury
Background: Spinal cord has a limited capacity to repair therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells ...
متن کاملEffect of olfactory ensheathing cells (OECs) transplantation on functional recovery in acute phase of spinal contused rats
Introduction: Spinal cord injuries (SCI) lead to permanent irreversible functional deficits. Poor prognosis of patients is the motivation of searching a treatment for the chronic injury. Planting stem cells provides us with a promising strategy. In the meanwhile, the use of olfactory ensheathing cells (OECs) has shown very good results. This study aims at evaluating the effe...
متن کاملP 82: The Transplantation of Human Umbilical Cord Mesenchymal Stem Cells in Neonatal Strokes
Brain injuries that caused by strokes (result of intra partum ischemia) are a frequent cause of prenatal mortality and morbidity with limited therapeutic options. Transplanting human mesenchymal stem cells (hmscs) indicates improvement in hypoxic Ischemic brain injury (HIBD) by secretion growth factor stimulating repair processes (Hmscs) known as multi potent cells which isolated from bone marr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Critical care medicine
دوره 38 11 شماره
صفحات -
تاریخ انتشار 2010